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Ramanujan-type continuous measures for biorthogonal
q-rational functions

Natig M Atakishiyev†‡
IIMAS-UNAM, Apartado Postal 139-B, 62191 Cuernavaca, Morelos, Mexico

Received 10 July 1995

Abstract. It is shown that Ramanujan-type continuous measures for a hierarchy of4φ3

biorthogonal rational functions can be systematically built from simple cases of the Rogers–
Szeg̈o (for 0 < q < 1) and Stieltjes–Wigert (forq > 1) polynomials by using the Berg–Ismail
procedure of attaching generating functions to measures.

1. Introduction

The idea of extending non-negative real weight functions to more general complex ones goes
back at least to Szegö [1] and Hahn [2]. The goal is to obtain orthogonality relations with
continuous measures for classical polynomials in a wider range of parameters. The detailed
motivation for the study of such extensions can be found in more recent publications [3–7]
on this subject. [6] also contains examples of complex weight functions with respect to
which the Jacobi, Laguerre, littleq-Jacobi and Askey–Wilson polynomials are orthogonal.

Recently it has become clear that there exists a natural way of constructing the particular
type of complex measures for an entire hierarchy of classicalq-polynomials, ranging from
the one-parameter continuousq-Hermite polynomials [8] to the five-parameter Askey–
Wilson polynomials [9]. It turns out that the use of the modular and periodicity properties of
the theta-functionsϑi(z, q), i = 1, 2, 3, 4 [10, 11], which enter the standard weight functions
for all of these polynomials, leads directly to complex weight functions with an infinite
support [12–17]. The advantage of the Ramanujan-type measures thus obtained is that they
admit the transformationq → q−1.

As is shown in [18], one can also arrive at the same results for a hierarchy of the
Askey–Wilson polynomials by using the Berg and Ismail procedure of attaching generating
functions to orthogonality measures [19]. The purpose of the present paper is to apply the
same technique of constructing Ramanujan-type measures to a family of4φ3 biorthogonal
rational functions [7], which are the unit circle analogues of the Askey–Wilson polynomials.

† Permanent address: Institute of Physics, Azerbaijan Academy of Sciences, Baku 370143, Azerbaijan. Visiting
scientist at IIMAS-UNAM/Cuernavaca with Ćathedra Patrimonial CONACYT, Mexico.
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2. The Rogers–Szeg̈o ladder (0 < q < 1)

Theq-analogue of Hermite polynomials on the unit circle are the Rogers–Szegö polynomials
[1, 20, 21]

Hn(z; q) =
n∑

k=0

[n

k

]
q
zk = 2φ0(q

−n, 0; q, zqn) (2.1)

where
[

n

k

]
q

is theq-binomial coefficient,[n

k

]
q

= (q; q)n

(q; q)k(q; q)n−k

and(a; q)n = ∏n−1
j=0(1 − aqj ) is theq-shifted factorial. The basic hypergeometric function

2φ0 in (2.1) represents a particular case(r = 2, s = 0, a1 = q−n, a2 = 0) of the general
definition

rφs

[
a1, . . . , ar

b1, . . . , bs

; q, z

]
=

∞∑
n=0

(a1, . . . , ar; q)n

(b1, . . . , bs, q; q)n
[(−1)nqn(n − 1)/2]1+s−rzn (2.2)

with the convention(a1, . . . , ar; q)n = ∏r
j=1(aj ; q)n [22].

Szeg̈o [1] has proved that the polynomials (2.1) satisfy the orthogonality relation

1

2π i

∮
|z|=1

Hm(−q−1/2z∗; q)Hn(−q−1/2z; q)ϑ3

(
logz

2i
, q1/2

)
dz

z
= (q; q)m

qm
δmn (2.3)

whereϑ3(z, q) is the theta-function, i.e.

ϑ3(z, q) ≡ ϑ3(z|τ) =
∞∑

k=−∞
qk2

e2ikz (2.4)

andq = exp(π iτ) [10]. The orthogonality relation (2.3) on the unit circle can be transformed
into the Ramanujan-type orthogonality of the form [14]∫ ∞

−∞
Hm(−q−1/2 e2iκx; q)Hn(−q−1/2 e−2iκx; q) e−x2

dx = √
π

(q; q)n

qn
δmn

q = exp(−2κ2). (2.5)

Once the relation (2.5) is established, it is readily verified by a direct evaluation with the
aid of the explicit representation (2.1), the Fourier transformation∫ ∞

−∞
e−x2+2ixy dx = √

π e−y2
(2.6)

and Gauss identity (see, for example, [22])

(z; q)n =
n∑

k=0

[n

k

]
q
qk(k − 1)/2(−z)k. (2.7)

It follows from (2.1) and theq-binomial theorem
∞∑

n=0

(a; q)n

(q; q)n
zn = (az; q)∞

(z; q)∞
(2.8)

that the generating function for the Rogers–Szegö polynomials has the form [21]
∞∑

n=0

tn

(q; q)n
Hn(x; q) = eq(t)eq(xt) (2.9)
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whereeq(z) is theq-exponential function, i.e.

eq(z) :=
∞∑

n=0

zn

(q; q)n
= (z; q)−1 |z| < 1. (2.10)

Hence, combining (2.9) with the orthogonality relation (2.5) leads to the particular case∫ ∞

−∞
eq(−t e2iκx)eq(−τ e−2iκx) e−x2

dx = √
πeq(tτ )Eq(−q1/2t)Eq(−q1/2τ) (2.11)

of a Ramanujan’sq-extension of Cauchy form of the beta integral [23, 24, 4], namely∫ ∞

−∞
eq(α e2iκx)eq(β e−2iκx) e−x2+2mx dx = √

π em2
eq(αβ)Eq(αq1/2 e2imκ)Eq(βq1/2 e−2imκ).

(2.12)

Two points demand comments, however. First, it is common to express (see, for example,
[22–24, 4]) two integrals of Ramanujan, i.e. (2.12) and aq-extension of Euler’s beta integral∫ ∞

−∞
Eq(αq1/2 e2κx)Eq(βq1/2 e−2κx) e−x2+2mx dx = √

π em2
Eq(−αβ)eq(α e2mκ)eq(β e−2mκ)

(2.13)

in terms of the infinite product(z; q)∞ = ∏∞
n=0(1 − zqn), rather than theq-exponential

function (2.10) and its reciprocal

Eq(z) :=
∞∑

n=0

qn(n − 1)/2

(q; q)n
zn = (−z; q)∞. (2.14)

We find it more appropriate to use these forms (2.12) and (2.13) (cf [17, 18]). Second, since
the term 2mx in the argument of the exponential function exp(−x2 +2mx) can be removed
by the translationx → x+m and redefinition of the parametersα andβ, to simplify a proof
of (2.12) and (2.13) it is usually assumed thatm = 0. Thus the parameterm in (2.12) and
(2.13) is supposed to be real. In fact, these formulae are also valid for arbitrary complexm

[25]. This can be proved by a direct evaluation of integrals (2.12) and (2.13) with the aid
of the formulae (2.6), (2.8) and(

−q

z
; q

)
n
Eq(z) = qn(n + 1)/2z−nEq(zq

−n). (2.15)

As the real part of a complex numberm can be recovered by the shiftx → x−Rem, without
loss of generality it may be assumed thatm is imaginary, i.e.m = iy. Consequently, the
representations (2.12) and (2.13) are also instances of Fourier transformations and this
circumstance will be used in what follows.

Now we return to the integrand in (2.11), which represents a weight function for the
biorthogonal polynomials

pn(z; t, τ ; q) := (q−1/2τ ; q)n2φ1(q
−n, q1/2t; q3/2−n/τ ; q, qz/τ)

= (tτ ; q)n

(q1/2t)n
3φ2

[
q−n, tz, q1/2t

tτ, 0
; q, q

]
(2.16)

studied by Pastro [4]. Observe that the second line in (2.16) follows from the Jackson
transformation formula [22]

2φ1(q
−n, b; c; q, z) = (c/b; q)n

(c; q)n
3φ2

[
q−n, b, bz/cqn

bq1−n/c, 0
; q, q

]
(2.17)
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for terminating basic hypergeometric series2φ1, upon employing the relation

(aq−n; q)n

(bq−n; q)n
= (q/a; q)n

(q/b; q)n

(a

b

)n

. (2.18)

The normalization of polynomials (2.16) is chosen in such a way, that whent = τ = 0
they coincide with the Rogers–Szegö polynomials (2.1), i.e.

pn(z; 0, 0; q) = Hn(q
−1/2z; q). (2.19)

This formula follows from the readily verified limit relation

lim
c→∞ 2φ1(q

−n, a; c; q, cz) = 2φ0(q
−n, a; q, z). (2.20)

An explicit evaluation of the Ramanujan-type biorthogonality integral∫ ∞

−∞
pm(−e2iκx; t, τ ; q)pn(−e−2iκx; τ, t; q)eq(−t e2iκx)eq(−τ e−2iκx) e−x2

dx

= √
π

(q; q)n

qn
eq(q

ntτ )Eq(−q1/2t)Eq(−q1/2τ)δmn (2.21)

is given in the appendix.
Multiplying both sides of (2.21) by a constant factortm3 tn4 (q; q)−1

m (q; q)−1
n and summing

over indicesm andn from zero to infinity with the aid of the generating function [7]
∞∑

n=0

tn

(q; q)n
pn(z; a, b; q) = (atz, q−1/2bt; q)∞

(q−1/2tz, t; q)∞
= eq(t)eq(q

−1/2tz)

eq(q−1/2bt)eq(atz)
(2.22)

for the polynomials (2.16), we get(t = t1, τ = t2)

∞∫
−∞

e−x2
Eq(q

1/2t1t3 e2iκx)Eq(q
1/2t2t4 e−2iκx)

4∏
j=1

eq(−tj e(−)j+12iκx) dx

= √
πeq(t1t2)eq(t2t3)eq(t3t4)eq(t1t4)Eq(−t1t2t3t4)

4∏
j=1

Eq(−q1/2tj ). (2.23)

The integrand in (2.23) represents a weight function for the biorthogonality relation∫ ∞

−∞
rm(−e2iκx; t1, t2, t3, t4; q)rn(−e−2iκx; t2, t1, t4, t3; q)

×Eq(q
1/2t1t3 e2iκx)Eq(q

1/2t2t4 e−2iκx)e−x2
4∏

j=1

eq(−tj e(−)j+12iκx) dx

= √
π

(t1t2, t3t4, t1t2t3t4q
n−1, q; q)n

qn(t1t2t3t4; q)2n

δmneq(t1t2)eq(t2t3)eq(t3t4)eq(t1t4)

×Eq(−t1t2t3t4)

4∏
l=1

Eq(−q1/2tl) (2.24)

which is satisfied by4φ3 rational functions of Al-Salam and Ismail [7]

rn(z; t1, t2, t3, t4; q) = (t1t2; q)n

(q1/2t1)n
4φ3

[
q−n, t1z, q

1/2t1, t1t2t3t4q
n−1

q1/2t1t3z, t1t2, t1t4
; q, q

]
. (2.25)

The Ramanujan-type biorthogonality relation (2.24) was derived by a different method
in [16], but it can also be directly evaluated in exactly the same way as the integral
(2.21) (see the appendix), namely, by using the definition (2.25), the representation (2.23)



Ramanujan-type measures forq-rational functions 333

and the Pfaff–Saalschütz (A.7) and Chu–Vandermonde (A.12)q-sums. The normalization
in (2.25) is chosen in such a way that fort3 = t4 = 0 these rational functions and
the biorthogonality relation (2.24) reduce to the biorthogonal polynomials (2.16) and the
relation (2.21), respectively. Consequently, fortj = 0, 1 6 j 6 4, the rational functions
(2.25) coincide with the Rogers–Szegö polynomials (2.1), satisfying the Ramanujan-type
orthogonality relation (2.5).

3. The Stieltjes–Wigert ladder (q > 1)

The Stieltjes–Wigert polynomials [22]

Sn(z; q) =
n∑

k=0

[n

k

]
q
qk2

zk = 1φ1(q
−n; 0; q, zqn+1) (3.1)

represent the lower level in another ladder of4φ3 biorthogonal rational functions [7],
corresponding to the valuesq > 1 of the parameterq. They are related to the Rogers–Szegö
polynomials (2.1) by the Fourier transformation [14]

Sn(α e2κx; q) e−x2/2 = 1√
2π

∫ ∞

−∞
Hn(α e−2iκy; q) eixy−y2/2 dy (3.2)

whereα is an arbitrary complex number. It is interesting to compare (3.2) with the relation

Sn(x; q) = 1

π

∫ π

0
Hn(x eiϕ; q)ϑ3(ϕ, q) dϕ (3.3)

derived by Carlitz in [21].
From (2.5) and (3.2) it follows that the Stieltjes–Wigert polynomials (3.1) satisfy the

Ramanujan-type orthogonality relation of the form [14]∫ ∞

−∞
Sm(−q−1/2 e2κx; q)Sn(−q−1/2 e2κx; q) e−x2

dx = √
π

(q; q)m

qm
δmn. (3.4)

This can also be readily verified by a direct evaluation of (3.4) with the aid of the explicit
representation (3.1), the formula (cf (2.6))∫ ∞

−∞
e2xy−x2

dx = √
π ey2

(3.5)

and the identity (2.7).
As in the previous section for the Rogers–Szegö ladder we could have started with the

orthogonality relation (3.4) and the generating function [26]
∞∑

n=0

tn

(q; q)n
Sn(z; q) = eq(t) 0φ1(0; q, qzt) (3.6)

for the Stieltjes–Wigert polynomials (3.1). However, for the approach under consideration,
it is important that generating functions are expressed in terms of theq-exponential functions
(2.10) and (2.14), because biorthogonality relations at every next level follow from their
properties (2.15) and (A.5). Fortunately, there exists along with (3.4) another orthogonality
relation (cf [21])∫ ∞

−∞
Sm(−q1/2−m e2κx; q)Sn(−q1/2−n e−2κx; q) e−x2

dx = √
π(−1)nq−n(n−1)/2(q; q)nδmn

(3.7)
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since the Stieltjes and Hamburger moment problems [27] for the Stieltjes–Wigert
polynomials (3.1) are indeterminate. This is a direct consequence of (2.5) and the identity

Hn(z; q−1) = Sn(q
−nz; q) (3.8)

which follows from the definitions (2.1) and (3.1) upon using the transformation property
of the q-binomial coefficients [22][n

k

]
q−1

= qk(k−n)
[n

k

]
q
. (3.9)

In analogy with theq−1-Hermite polynomialshn(x|q) = i−nHn(ix|q−1) [28] it is
convenient to consider Stieltjes–Wigert polynomials of the form

sn(z; q) = i−nHn(z; q−1) = i−nSn(q
−nz; q). (3.10)

To distinguish them from the standard Stieltjes–Wigert polynomials (3.1), they will be
denoted by the small letters. From (3.7) it is evident that∫ ∞

−∞
sm(−q1/2 e2κx; q)sn(−q1/2 e−2κx; q) e−x2

dx = √
πq−n(n−1)/2(q; q)nδmn. (3.11)

A generating function for the polynomials (3.10) is [21]

∞∑
n=0

(−it)n

(q; q)n
qn(n−1)/2sn(z; q) = Eq(−t)Eq(−zt). (3.12)

This can be easily checked by using Cauchy’s multiplication rule
∑∞

n=0

∑n
k=0 akbn−k =∑∞

n=0 an

∑∞
k=0 bk for the product of two sequences{an} and {bk} and the definition of the

q-exponential function (2.14). Combining (3.12) with (3.11) leads to the integral∫ ∞

−∞
Eq(q

1/2t e2κx)Eq(q
1/2τ e−2κx) e−x2

dx = √
πeq(t)eq(τ )Eq(−tτ ) (3.13)

which is a particular case of Ramanujan’s identity (2.13) with the vanishing parameterm.
The integrand in (3.13) represents a weight function for the biorthogonal polynomials

p̃n(z; t, τ ; q) = i−npn(z; t, τ ; q−1)

= i−n(q1/2τ ; q−1)n 2φ1(q
−n, q1/2t−1; τq3/2−n; q, qtz)

(3.14)

wherepn(z; t, τ ; q) are defined by (2.16). Indeed, it is not difficult to verify by a direct
evaluation (actually repeating the same line of reasoningmutatis mutandisas for the case
of 0 < q < 1, considered in the appendix) that the following biorthogonality relation holds∫ ∞

−∞
p̃m(−e2κx; t, τ ; q)p̃n(−e−2κx; τ, t; q)Eq(qt e2κx)Eq(qτ e−2κx) e−x2

dx

= √
πq−n(n−1)/2(q; q)nEq(−q1−ntτ )eq(q

1/2t)eq(q
1/2τ)δmn. (3.15)

Observe that fort = τ = 0 the polynomials (3.14) reduce to the Stieltjes–Wigert polynomials
(3.10), i.e.

p̃n(z; 0, 0; q) = sn(q
1/2z; q). (3.16)

This follows from (3.14), (3.1) and (3.10) upon using the limit relation

lim
a→∞ 2φ1(q

−n, a; c; q, z/a) = 1φ1(q
−n; c; q, z). (3.17)
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A generating function for the polynomials (3.14)

∞∑
n=0

(−iα)n

(q; q)n
qn(n−1)/2p̃n(z; t, τ ; q) = eq(q

1/2ατ)eq(αtz)

eq(α)eq(q1/2αz)
(3.18)

can be obtained by a direct evaluation of the left member of (3.18) with the aid of the
q-binomial theorem (2.8). The biorthogonality relation (3.15) and the generating function
(3.18) imply the integral representation∫ ∞

−∞
eq(−q1/2t1t3 e2κx)eq(−q1/2t2t4 e−2κx)

4∏
j=1

Eq(qtj e(−)j+12κx) e−x2
dx

= √
πEq(−qt1t2)Eq(−qt2t3)Eq(−qt3t4)Eq(−qt1t4)eq(qt1t2t3t4)

4∏
k=1

eq(q
1/2tk).

(3.19)

The integrand in (3.19) represents a weight function for the biorthogonality relation [16]∫ ∞

−∞
r̃m(−e2κx; t1, t2, t3, t4; q)r̃n(−e−2κx; t2, t1, t4, t3; q)

×eq(−q1/2t1t3 e2κx)eq(−q1/2t2t4 e−2κx)

4∏
j=1

Eq(qtj e(−)j+12κx) e−x2
dx

=
√

π(q; q)n

1 − T q1−2n
q−n(n−1)/2Eq(−q1−nt1t2)Eq(−q1−nt3t4)Eq(−qt1t4)Eq(−qt2t3)

×eq(q
2−nT )

4∏
k=1

eq(q
1/2tj ) (3.20)

whereT ≡ t1t2t3t4 6= qk, k is an arbitrary integer number, andq−1-rational functions̃rm(z)

and r̃n(z) of Al-Salam and Ismail are defined as (cf (2.25))

r̃n(z; t1, t2, t3, t4; q) = i−nrn(z; t1, t2, t3, t4; q−1)

= (iq)nq−n2/2 (t̃1t̃2; q)

t̃n2
4φ3

[
q−n, t̃1z

−1, q1/2t̃1, T̃ qn−1

q1/2t̃1t̃3z−1t̃1t̃2, t̃1t̃4
; q, q

]
(3.21)

with t̃j = t−1
j , j = 1, 2, 3, 4, and T̃ = T −1. The biorthogonality relation (3.20) can be

directly evaluated by using the definition (3.21) and the formulae (2.15), (A.5), (A.7) and
(A.11).

4. Concluding remarks

As has been mentioned in section 2, the Rogers–Szegö (2.1) and the Stieltjes–Wigert
(3.1) polynomials, which represent the ground levels of two4φ3 ladders for different
values 0 < q < 1 and q > 1 of the parameterq, are related to each other by the
Fourier transformation (3.2). An interesting direction for further study is to extend this
transformation to the case of the higher levels, i.e. to find an integral relation between4φ3

biorthogonal rational functions (2.25) and (3.21).
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Appendix

To evaluate the Ramanujan-type biorthogonality integral

Imn(t, τ ; q) =
∫ ∞

−∞
pm(−e2iκx; t, τ ; q)pn(−e−2iκx; τ, t; q)eq(−t e2iκx)eq(−τ e−2iκx) e−x2

dx

(A.1)

substitute the explicit expression

pm(−e2iκx; t, τ ; q) = (q−1/2τ ; q)m

m∑
j=0

(q−m, q1/2t; q)j

(q, q3/2−m/τ ; q)j

(
−q

τ
e2iκx

)j

(A.2)

into (A.1) for both polynomials in it, which are defined by (2.16). This gives

Imn(t, τ ; q) = (q−1/2τ ; q)m(q−1/2t; q)n

×
m∑

j=0

(q−m, q1/2t; q)j

(q, q3/2−m/τ ; q)j

(
−q

τ

)j n∑
k=0

(q−n, q1/2τ ; q)k

(q, q3/2−n/t; q)k

(
−q

t

)k

×
∫ ∞

−∞
e2iκ(j−k)x−x2

eq(−t e2iκx)eq(−τ e−2iκx) dx. (A.3)

The integration over the variablex in (A.3) is performed by (2.12) withm = 2iκ(j −k), α =
−t andβ = −τ , i.e.

Imn(tτ ; q) = √
πeq(tτ )(q−1/2τ ; q)m(q−1/2t; q)n

m∑
j=0

(q−m, q1/2t; q)j

(q, q3/2−m/τ ; q)j

(
−q

τ

)j

×
n∑

k=0

(q−n, q1/2τ ; q)k

(q, q3/2−n/t; q)k

(
−q

t

)k

q(j−k)2/2Eq(−tqj−k+1/2)Eq(−τqk−j+1/2).

(A.4)

The formulae (2.15) and

Eq(z) = (−z; q)kEq(zq
k) (A.5)

enable the right-hand side of (A.4) to be written as

Imn(tτ ; q) = √
πeq(tτ )Eq(−q1/2t)Eq(−q1/2τ)(q−1/2τ ; q)m(q−1/2t; q)n

×
m∑

j=0

(q−m, q1/2/τ ; q)j

(q, q3/2−m/τ ; q)j
qj

n∑
k=0

(q−n, q1/2τ, q1/2−j /t; q)k

(q, q1/2−j τ, q3/2−n/t; q)k
qk. (A.6)

The sum with respect to the indexk in (A.6) is a particular case of the Pfaff–Saalschütz
q-sum

3φ2

[
q−n, a, b

c, abc−1q1−n
; q, q

]
= (c/a, c/b; q)n

(c, c/ab; q)n
(A.7)
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with a = q1/2τ, b = q1/2−j /t andc = τq1/2−j , therefore it is equal to

(q−j , tτ ; q)n

(q1/2−j τ, q−1/2t; q)n
.

Consequently,

Imn(t, τ ; q) = √
π(q−1/2τ ; q)meq(tτqn)Eq(−q1/2t)Eq(−q1/2τ)

×
m∑

j=0

(q−m, q1/2/τ ; q)j

(q, q3/2−m/τ ; q)j
qj (q−j ; q)n

(q1/2−j τ ; q)n
. (A.8)

Due to the factor(q−j ; q)n a sum over the indexj in (A.8) is equal to zero forn > m,
while for n 6 m it starts withj = n. Therefore it can be written as

m∑
j=0

(q−m, q1/2/τ ; q)j

(q, q3/2−m/τ ; q)j
qj (q−j ; q)n

(q1/2−j τ ; q)n
= (q−m; q)n

(q3/2−m/τ ; q)n

(
q1/2

τ

)n N∑
l=0

(q−N, q1/2/τ ; q)l

(q, q3/2−N/τ ; q)l
ql

(A.9)

whereN = m − n and we have used the formulae (2.18) and (see, for example, [22])

(a; q)n+k = (a; q)n(aqn; q)k. (A.10)

The remaining sum overl is calculated by the Chu–Vandermonde formula

2φ1(a, q−n; c; q, q) = (c/a; q)n

(c; q)n
an (A.11)

and gives

(q1−N ; q)N

(q3/2−N/τ ; q)N

(
q1/2

τ

)N

= δN0 = δmn

because of the evident relation(q1−N ; q)N = δN0, valid for any non-negative integer number
N . Hence, the entire sum overj in (A.8) is equal to

(q−n; q)n

(q3/2−n/τ ; q)n

(
q1/2

τ

)n

δmn = (q; q)n

qn(q−1/2τ ; q)n
δmn (A.12)

where we have again used (2.18) witha = 1 andb = q3/2/τ . Substituting (A.12) into
(A.8), we obtain the following expression for the biorthogonality integral (A.1):

Imn(t, τ ; q) = √
π

(q; q)n

qn
eq(q

ntτ )Eq(−q1/2t)Eq(−q1/2τ)δmn

to complete the proof of (2.21).
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