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Abstract. It is shown that Ramanujan-type continuous measures for a hierarchypzof
biorthogonal rational functions can be systematically built from simple cases of the Rogers—
Szed (for 0 < g < 1) and Stieltjes—Wigert (fog > 1) polynomials by using the Berg—Ismail
procedure of attaching generating functions to measures.

1. Introduction

The idea of extending non-negative real weight functions to more general complex ones goes
back at least to Szég[1] and Hahn [2]. The goal is to obtain orthogonality relations with
continuous measures for classical polynomials in a wider range of parameters. The detailed
motivation for the study of such extensions can be found in more recent publications [3-7]
on this subject. [6] also contains examples of complex weight functions with respect to
which the Jacobi, Laguerre, littie-Jacobi and Askey—Wilson polynomials are orthogonal.

Recently it has become clear that there exists a natural way of constructing the particular
type of complex measures for an entire hierarchy of clasgigadlynomials, ranging from
the one-parameter continuoysHermite polynomials [8] to the five-parameter Askey—
Wilson polynomials [9]. It turns out that the use of the modular and periodicity properties of
the theta-function®; (z, ¢),i = 1, 2, 3, 4 [10, 11], which enter the standard weight functions
for all of these polynomials, leads directly to complex weight functions with an infinite
support [12-17]. The advantage of the Ramanujan-type measures thus obtained is that they
admit the transformatiop — ¢ 1.

As is shown in [18], one can also arrive at the same results for a hierarchy of the
Askey-Wilson polynomials by using the Berg and Ismail procedure of attaching generating
functions to orthogonality measures [19]. The purpose of the present paper is to apply the
same technique of constructing Ramanujan-type measures to a famipg bforthogonal
rational functions [7], which are the unit circle analogues of the Askey—Wilson polynomials.
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2. The Rogers—-Szapyladder (0 < g < 1)

Theg-analogue of Hermite polynomials on the unit circle are the Rogers-63magnomials
[1,20,21]
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Hyz:q) =) [ZL 2" = 2¢0(¢™". 0; ¢, 24" 2.1

k=0
Where[Z]q is the g-binomial coefficient,
[n] _ (g5 @n
kdg (g5 Dr(q; In—k
and(a; ¢), = ]'[;’;3(1— aq’) is theg-shifted factorial. The basic hypergeometric function
2¢0 in (2.1) represents a particular cage= 2,s = 0,a; = ¢ ", a, = 0) of the general
definition
alv . > (alv ceey ar; q)n 1+,_
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¢[b1,..., b ] ,Z(bl,...,bs,q;q)n[( ya 72l @2
with the convention(ay, ..., a,; q), = ]_[J’.zl(aj; Q) [22].

Szeg [1] has proved that the polynomials (2.1) satisfy the orthogonality relation

IOgZ 1/2) dz (q’ q)m
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wherevs(z, g) is the theta-function, i.e.
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93z, q) = 0sclr) = Y ¢~ ¥ (2.4)

k=—00

andg = exp(zit) [10]. The orthogonality relation (2.3) on the unit circle can be transformed
into the Ramanujan-type orthogonality of the form [14]

> -1/2 eZin. —1/2 —2ikx. — (q: @n
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q = exp(—2«?). (2.5)

Once the relation (2.5) is established, it is readily verified by a direct evaluation with the
aid of the explicit representation (2.1), the Fourier transformation

/ R (2.6)

and Gauss identity (see, for example, [22])

n

n
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It follows from (2.1) and they-binomial theorem
o (@5 9)n (az; @)oo
"= 2.8
; @ D (25 9)oo (8)

that the generating function for the Rogers—Srpglynomials has the form [21]
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H,(x: q) = eq(t)eq(x1) (2.9)
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wheree, (z) is theg-exponential function, i.e.

o n

Z _
ey(2) 1= 2::0 G =@ ! Izl < L. (2.10)

Hence, combining (2.9) with the orthogonality relation (2.5) leads to the particular case
/ ey (—1 @), (1 €2 e dx = /e, (t1) E,(—qY%) E,(—q?7) (2.11)
of a Ramanujan’g-extension of Cauchy form of the beta integral [23, 24, 4], namely

/_OO e, (@ eZiKX)eq B e72iKX) e7x2+2mx dx = ﬁ e{nzeq (Olﬂ)Eq (Olql/z eZimK)Eq (‘Bql/Z 672im/<).
(2.12)

Two points demand comments, however. First, it is common to express (see, for example,
[22—-24, 4]) two integrals of Ramanujan, i.e. (2.12) angtextension of Euler’s beta integral

f T (g E, (g2 e ) e de = w8 E, (—a)e, (o @ )e, (Be )
(2.13)

in terms of the infinite productz; ¢)o = [],2¢(1 — z¢"), rather than the;-exponential
function (2.10) and its reciprocal

nn—1)/2

E,(2) = Z 1 o q)n)/ = (~2: @)oo (2.14)
We find it more appropriate to use these forms (2.12) and (2.13) (cf [17, 18]). Second, since
the term 2ux in the argument of the exponential function éxp? + 2mx) can be removed
by the translationr — x +m and redefinition of the parametersandg, to simplify a proof
of (2.12) and (2.13) it is usually assumed that= 0. Thus the parametet in (2.12) and
(2.13) is supposed to be real. In fact, these formulae are also valid for arbitrary complex
[25]. This can be proved by a direct evaluation of integrals (2.12) and (2.13) with the aid
of the formulae (2.6), (2.8) and

(—%; q)n E,(z) = qn(n +1)/2:"E,(zg™). (2.15)

As the real part of a complex numbarcan be recovered by the shift—> x —Rem, without
loss of generality it may be assumed thatis imaginary, i.em = iy. Consequently, the
representations (2.12) and (2.13) are also instances of Fourier transformations and this
circumstance will be used in what follows.

Now we return to the integrand in (2.11), which represents a weight function for the
biorthogonal polynomials

Pz 1,75 q) = (g YT Quapr(a ™", M2 ¢¥* " T g, qz)T)
RGN q‘”,tz,ql/zt
1 q, 2.16
= Gy 3$2 I A (2.16)

studied by Pastro [4]. Observe that the second line in (2.16) follows from the Jackson
transformation formula [22]

_ (c/b; @n q~", b, bz/cq"
" g z) = ‘g, 2.17
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for terminating basic hypergeometric serigg, upon employing the relation
@q™" @n _ (/a5 @n (g)ﬂ
(bqg™";@)n  (q/b; @n

The normalization of polynomials (2.16) is chosen in such a way, that whent = 0

they coincide with the Rogers—SZegolynomials (2.1), i.e.

(2.18)

Pa(2:0,0;.9) = Hy(g~ 225 ). (2.19)
This formula follows from the readily verified limit relation
Cangoz¢1(q’", a;c;q,cz) =290(g™ ", a; q, z). (2.20)

An explicit evaluation of the Ramanujan-type biorthogonality integral
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is given in the appendix.
Multiplying both sides of (2.21) by a constant fact§t} (¢; ¢),,%(¢; ¢),;* and summing
over indicesn andn from zero to infinity with the aid of the generating function [7]
S (atz,q Y2t @)oo eg(D)eg (g™ ?12)
Z.ip"(z;a’b”]) = 12, - = 12
=@ (g7 V%tz,t; )0 eq(q4bt)ey(atz)

for the polynomials (2.16), we gét = 11, T = o)

(2.22)
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The integrand in (2.23) represents a weight function for the biorthogonality relation
o0
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—00
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which is satisfied by¢s rational functions of Al-Salam and Ismail [7]
(t112; @)n q7", iz, ¢t titatatag"

n (25 11, 12, 13, 14; = . 0 g, .
(25 11, 12, 13, 145 q) (21 493 gY2t1t32. tata, it q.9
The Ramanujan-type biorthogonality relation (2.24) was derived by a different method
in [16], but it can also be directly evaluated in exactly the same way as the integral
(2.21) (see the appendix), namely, by using the definition (2.25), the representation (2.23)

(2.25)
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and the Pfaff-Saalséte (A.7) and Chu—Vandermonde (A.12)sums. The normalization

in (2.25) is chosen in such a way that fer = 1, = 0 these rational functions and
the biorthogonality relation (2.24) reduce to the biorthogonal polynomials (2.16) and the
relation (2.21), respectively. Consequently, fpre= 0, 1 < j < 4, the rational functions
(2.25) coincide with the Rogers—SZegolynomials (2.1), satisfying the Ramanujan-type
orthogonality relation (2.5).

3. The Stieltjies—Wigert ladder (g > 1)

The Stieltjes—Wigert polynomials [22]

n

n —n n
Sz =3 [k] q4“'z" = 11(¢7"; 0; ¢, 2¢"Y) 3.1
k=0 4

represent the lower level in another ladder 4f biorthogonal rational functions [7],
corresponding to the valugs> 1 of the parametej. They are related to the Rogers—Sieg
polynomials (2.1) by the Fourier transformation [14]

! 1 o0 ; v y?
S, (o €%; q) e~ / H, (o €2, g) ™ =y/2dy 3.2)
A 2 —0o0
wherec is an arbitrary complex number. It is interesting to compare (3.2) with the relation

1 [ .
Sn(x;q)=;/0 H,(x €%; q)03(p, q) dp (3-3)

derived by Carlitz in [21].
From (2.5) and (3.2) it follows that the Stieltjes—Wigert polynomials (3.1) satisfy the
Ramanujan-type orthogonality relation of the form [14]

/ Su(—q 25 )5, (—g 2 gye de = v LD, (3.4)
- q"

This can also be readily verified by a direct evaluation of (3.4) with the aid of the explicit
representation (3.1), the formula (cf (2.6))

/ Yy = Jre’ (3.5)

and the identity (2.7).
As in the previous section for the Rogers—Széadder we could have started with the
orthogonality relation (3.4) and the generating function [26]

o0 n

2

=5 (g5 q)n

Sn(z; q) = eq(1) 091(0; q, gz1) (3.6)

for the Stielties—Wigert polynomials (3.1). However, for the approach under consideration,
it is important that generating functions are expressed in terms gfthgonential functions
(2.10) and (2.14), because biorthogonality relations at every next level follow from their
properties (2.15) and (A.5). Fortunately, there exists along with (3.4) another orthogonality
relation (cf [21])

/ Sm(_ql/z_m € X; q)Sn(_ql/z_n e_ZKx; 6]) e—xz d)C = \/E(_l)nq—n(n—l)/Z(q; q)116mn
—00
3.7)
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since the Stielties and Hamburger moment problems [27] for the Stieltjies—Wigert
polynomials (3.1) are indeterminate. This is a direct consequence of (2.5) and the identity

Hy(z;97Y = Su(q "2 9) (3.8)

which follows from the definitions (2.1) and (3.1) upon using the transformation property
of the g-binomial coefficients [22]

n _ ktk=m) [T
[k]qfl —q [k]q . (3.9)
In analogy with theg~!-Hermite polynomialsh,(x|q) = i7" H,(ix|¢g~") [28] it is
convenient to consider Stieltjes—Wigert polynomials of the form
sn(ziq) =17"Hy(z:7 Y =17"S,(q7"2: ). (3.10)

To distinguish them from the standard Stieltjies—Wigert polynomials (3.1), they will be
denoted by the small lettar From (3.7) it is evident that

/ su(—q2 5 )5y (—q? e g e dv = VgV 2(q: )b (3.11)
A generating function for the polynomials (3.10) is [21]
o (=it o
> I 212, (22 g) = By (—) By (~20). (3.12)
=5 (g5 q)n

This can be easily checked by using Cauchy’s multiplication Y& o> /o axby—x =
Yool 0dn > oo bx for the product of two sequencés,} and {»;} and the definition of the
g-exponential function (2.14). Combining (3.12) with (3.11) leads to the integral

/ E (Y% @ E,(qY?r e %) e dx = /me, (1)e, (1) E,(—1T) (3.13)
which is a particular case of Ramanujan’s identity (2.13) with the vanishing parameter
The integrand in (3.13) represents a weight function for the biorthogonal polynomials

Pzt T5q) =1 " palzit, 1597

=@ ;9 Y0 217", ¢

17 1% g, qt2)

(3.14)

where p,(z; t, 7; q) are defined by (2.16). Indeed, it is not difficult to verify by a direct
evaluation (actually repeating the same line of reasoningatis mutandisas for the case
of 0 < g < 1, considered in the appendix) that the following biorthogonality relation holds

o0
/ Pn(—€ 1,75 @) pu(—€ 2% 1,1, Q) Ey (g1 €)E (gT € %) e dx

o0
= Vg """V 2(q; nEy (=g ") ey (2D ey (g T) S (3.15)

Observe that for = T = 0 the polynomials (3.14) reduce to the Stielties—Wigert polynomials
(3.10), i.e.

Pn(2:0,0; 9) = s,(q™%z: q). (3.16)
This follows from (3.14), (3.1) and (3.10) upon using the limit relation
Jim 2¢1(¢™", a; ¢ 9, 2/a) = 141(g7"; ¢34, 7). (3.17)
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A generating function for the polynomials (3.14)

oo

(—iOt)” n(n—1)/2 e‘l(q
——q pn(zit,T5q9) =
; (q; @n ! eq(a)eq (6]1/2012)

Y2q1)e,(atz)

(3.18)

can be obtained by a direct evaluation of the left member of (3.18) with the aid of the
g-binomial theorem (2.8). The biorthogonality relation (3.15) and the generating function
(3.18) imply the integral representation

/ ey (=" P11tz ey (—q " Prata € ) [ E,qr; €772 e e
o "
4

= VT E (—qt1tp) E;(—qta13) Eq(—qtata) E; (—q1ita) e  (qatatata) l_[ eq(q"?t).
=1

(3.19)

The integrand in (3.19) represents a weight function for the biorthogonality relation [16]
oo
/ Fon (—€; 11, 12, 13, 4 @) (—€ 25 g, 11, 14, 13: q)
—0o0

4
xeq(—ql/ztltg eZKX)eq(_ql/2t2t4 e72KX) 1_[ Eq (qtj e(,)jHZKx) e—x2 dx

j=1
ﬁ(q’q)” —n(n— —n —n
qu nV2E (—q " "t112) Ey(—q* "tata) Ey (—qt1ta) E; (—qtat3)
4
xeq(q*"T) [ [ eg(a™?y) (3.20)

k=1

whereT = titatats # g*, k is an arbitrary integer number, agd*-rational functions’,, (z)
andr,(z) of Al-Salam and Ismail are defined as (cf (2.25))

~ - -1

Pn(zity, o, ta tas q) =17 "ry (2510, 12, 13, ta3 ¢ )

25 (11123 q) g izt g%, Tq" ™t
———4Q3 s q,4q

AT 3.21
f q 203z 01, 111y (3.21)

= (ig)"q™"

with ;; = 7', j = 1,2,3,4, andT = T~'. The biorthogonality relation (3.20) can be
directly evaluated by using the definition (3.21) and the formulae (2.15), (A.5), (A.7) and
(A.11).

4. Concluding remarks

As has been mentioned in section 2, the Rogers-548dl) and the Stielties—Wigert
(3.1) polynomials, which represent the ground levels of twg ladders for different
values 0< g < 1 andg > 1 of the parametey, are related to each other by the
Fourier transformation (3.2). An interesting direction for further study is to extend this
transformation to the case of the higher levels, i.e. to find an integral relation befggen
biorthogonal rational functions (2.25) and (3.21).
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Appendix
To evaluate the Ramanujan-type biorthogonality integral

o0
L (t,T59) = / P (=€t T q) pp(—€ 2% 11 q)eq(—t ez'”)eq(—r g 2ikx) g dfy
—00

(A.1)

substitute the explicit expression

m

- _ @™ q"%59); [ g i)
m(—ez'”; t, T, ) = ( 1/21'; )m —_— | —— eZI/(x A2
P v= I ,; (q.q%%"/7: q); ( T ) (A2)

into (A.1) for both polynomials in it, which are defined by (2.16). This gives

Lun(t, T3 @) = (@ Y205 @ (q™%t5 @)

Xi (™" q"%; 9); (_g)J’X": (@ g7t @ (_g)k

= (q.q¥m/tig); N T =@ q¥E g\t
oo

X/ eZ'K(j_k)x_xzeq(—l‘eZIKX)eq(—‘L' e_ZIKX)dx. (A.3)
—0oQ

The integration over the variablein (A.3) is performed by (2.12) witm = 2ix (j —k), o =
—tandg = —r, i.e.

_ _ (@ q"%t:9); ( q\
Imn([f; f]) = ﬁeq(tr)(q 1/2t; q)m(q l/zt; q)n ! <_7>

m
= (.4t \ T

n

(@™, q"%T; g ( Cl)k (j—k)2/2 j—k+1/2 k—j+1/2
xy ——— == (=2 gV E, (—tqg? MY E, (—rgt T2,
,;, (q.q¥>"/t: g \ 1 ! !

(A.4)
The formulae (2.15) and
Ey(2) = (=2; )k Eg(zq") (A.5)
enable the right-hand side of (A.4) to be written as
Lun (175 @) = Nme,(t1) Eg(—q™ 1) Eg(—q ") (¢ %75 @) (g™ Y%15 @)
N AL VR SN VI Y e AT D I

(q -
X q . q".
;; (q.4%% ™t q); ; (g, 9?7 T, q3% 15 q)i

m —m

(A.6)

The sum with respect to the indeéxin (A.6) is a particular case of the Pfaff-Saaligtzh
g-sum

(A7)

)

¢ q_”,a,b . _ (C/Cl, c/b;q)n
2| o abe-1gtn T T (e cjab; g,
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with a = ¢g¥?t, b = ¢¥/>77/t andc = tq¥?/, therefore it is equal to
(.17 q)n
(Y2 Tt q Y25 ),
Consequently,
Lun(t, 75 q) = /(g 205 meg (114" Eq(—q %) Eqg(—¢V7)
@ g ) @@
= (a.q%> i) @YV T

(A.8)

Due to the factorig=/; ¢), a sum over the index in (A.8) is equal to zero fon > m,
while for n < m it starts with j = n. Therefore it can be written as
i @ a5 @i U <ql/2)" @M a? e

q : =
=@ g% Tiq); T @V ITige (@Y T

T ) = (q.9%F N/t q)
(A.9)
whereN = m — n and we have used the formulae (2.18) and (see, for example, [22])
(@; Qntk = (@5 @)n(aq"; @) (A.10)
The remaining sum ovdris calculated by the Chu—Vandermonde formula
2p1(a,q7";¢59,9) = (/a D (A.11)

(c; qn

G T
v\ —— ) =3Nv0=mn
@¥*N/t;q)y \ T

because of the evident relaticgp™"; ¢)y = 8x0, valid for any non-negative integer number
N. Hence, the entire sum ovgrin (A.8) is equal to

™" @n (ql/z)” _ @ g
(@¥% " /T5 q)n " g gV ),

T
where we have again used (2.18) with= 1 andb = ¢%?/r. Substituting (A.12) into
(A.8), we obtain the following expression for the biorthogonality integral (A.1):

Lin(t,T5q) = ﬁ(q;Q)n

to complete the proof of (2.21).

and gives

(A.12)

eq(@" 1TV Ey (=) Ey (=g T) 80
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